Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(6): 1719-1726, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38334484

RESUMO

Glucose is an important biomarker for diagnosing and prognosing various diseases, including diabetes and hypoglycemia, which can have severe side effects, symptoms, and even lead to death in patients. As a result, there is a need for quick and economical glucose level measurements to help identify those at potential risk. With the increase in smartphone users, portable smartphone glucose sensors are becoming popular. In this paper, we present a disposable microfluidic glucose sensor that accurately and rapidly quantifies glucose levels in human urine using a combination of colorimetric analysis and computer vision. This glucose sensor implements a disposable microfluidic device based on medical-grade tapes and glucose analysis strips on a glass slide integrated with a custom-made polydimethylsiloxane (PDMS) micropump that accelerates capillary flow, making it economical, convenient, rapid, and equipment-free. After absorbing the target solution, the disposable device is slid into the 3D-printed main chassis and illuminated exclusively with Light Emitting Diode (LED) illumination, which is pivotal to color-sensitive experiments. After collecting images, the images are imported into the algorithm to measure the glucose levels using computer vision and average RGB values measurements. This article illustrates the impressive accuracy and consistency of the glucose sensor in quantifying glucose in sucrose water. This is evidenced by the close agreement between the computer vision method used by the sensor and the traditional method of measuring in the biology field, as well as the small variation observed between different sensor performances. The exponential regression curve used in the study further confirms the strong relationship between glucose concentrations and average RGB values, with an R-square value of 0.997 indicating a high degree of correlation between these variables. The article also emphasizes the potential transferability of the solution described to other types of assays and smartphone-based sensors.


Assuntos
Diabetes Mellitus , Smartphone , Humanos , Microfluídica , Glucose/análise , Diabetes Mellitus/diagnóstico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38393850

RESUMO

In the paper, we present an integrated flow cytometer with a 2D array of magnetic sensors based on dual-frequency oscillators in a 65-nm CMOS process, with the chip packaged with microfluidic controls. The sensor architecture and the presented array signal processing allows uninhibited flow of the sample for high throughput without the need for hydrodynamic focusing to a single sensor. To overcome the challenge of sensitivity and specificity that comes as a trade off with high throughout, we perform two levels of signal processing. First, utilizing the fact that a magnetically tagged cell is expected to excite sequentially an array of sensors in a time-delayed fashion, we perform inter-site cross-correlation of the sensor spectrograms that allows us to suppress the probability of false detection drastically, allowing theoretical sensitivity reaching towards sub-ppM levels that is needed for rare cell or circulating tumor cell detection. In addition, we implement two distinct methods to suppress correlated low frequency drifts of singular sensors-one with an on-chip sensor reference and one that utilizes the frequency dependence of the susceptibility of super-paramagnetic magnetic beads that we deploy as tags. We demonstrate these techniques on a 7×7 sensor array in 65 nm CMOS technology packaged with microfluidics with magnetically tagged dielectric particles and cultu lymphoma cancer cells.

3.
PLoS One ; 19(1): e0296344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236796

RESUMO

The White Blood Cell (WBC) count is one of the key parameters signaling the health of the immune system. Abnormal WBC counts often signal a systemic insult to the body such as an underlying infection or an adverse side effect to medication. Typically, the blood collected is sent to a central lab for testing, and results come back within hours, which is often inconvenient and may delay time-sensitive diagnosis or treatment. Here, we present the CytoTracker, a fully electronic, microfluidic based instant WBC analyzer with the potential to be used at point-of-care. The CytoTracker is a lightweight, portable, affordable platform capable of quantifying WBCs within minutes using only 50 µl of blood (approximately one drop of blood). In this study, we clinically evaluated the accuracy and performance of CytoTracker in measuring WBC and granulocyte counts. A total of 210 adult patients were recruited in the study. We validated the CytoTracker against a standard benchtop analyzer (Horiba Point of Care Hematology Analyzer, ABX Micros 60). Linear dynamic ranges of 2.5 k/µl- 35 k/µl and 0.6 k/µl- 26 k/µl were achieved for total WBC count and granulocyte count with correlation coefficients of 0.97 and 0.98. In addition, we verified CytoTracker's capability of identifying abnormal blood counts with above 90% sensitivity and specificity. The promising results of this clinical validation study demonstrate the potential for the use of the CytoTracker as a reliable and accurate point-of-care WBC analyzer.


Assuntos
Hematologia , Microfluídica , Adulto , Humanos , Contagem de Leucócitos , Leucócitos , Hematologia/métodos , Contagem de Células Sanguíneas
4.
Biomed Microdevices ; 25(2): 13, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36933063

RESUMO

The use of saliva as a diagnostic fluid has always been appealing due to the ability for rapid and non-invasive sampling for monitoring health status and the onset and progression of disease and treatment progress. Saliva is rich in protein biomarkers and provides a wealth of information for diagnosis and prognosis of various disease conditions. Portable electronic tools which rapidly monitor protein biomarkers would facilitate point-of-care diagnosis and monitoring of various health conditions. For example, the detection of antibodies in saliva can enable rapid diagnosis and tracking disease pathogenesis of various auto-immune diseases like sepsis. Here, we present a novel method involving immuno-capture of proteins on antibody coated beads and electrical detection of dielectric properties of the beads. The changes in electrical properties of a bead when capturing proteins are extremely complex and difficult to model physically in an accurate manner. The ability to measure impedance of thousands of beads at multiple frequencies, however, allows for a data-driven approach for protein quantification. By moving from a physics driven approach to a data driven approach, we have developed, for the first time ever to the best of our knowledge, an electronic assay using a reusable microfluidic impedance cytometer chip in conjunction with supervised machine learning to quantifying immunoglobulins G (IgG) and immunoglobulins A (IgA) in saliva within two minutes.


Assuntos
Microfluídica , Saliva , Biomarcadores , Impedância Elétrica , Eletrônica , Imunoglobulina G , Aprendizado de Máquina , Microfluídica/métodos , Humanos
5.
Educ Psychol Meas ; 83(2): 375-400, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866071

RESUMO

To reduce the chance of Heywood cases or nonconvergence in estimating the 2PL or the 3PL model in the marginal maximum likelihood with the expectation-maximization (MML-EM) estimation method, priors for the item slope parameter in the 2PL model or for the pseudo-guessing parameter in the 3PL model can be used and the marginal maximum a posteriori (MMAP) and posterior standard error (PSE) are estimated. Confidence intervals (CIs) for these parameters and other parameters which did not take any priors were investigated with popular prior distributions, different error covariance estimation methods, test lengths, and sample sizes. A seemingly paradoxical result was that, when priors were taken, the conditions of the error covariance estimation methods known to be better in the literature (Louis or Oakes method in this study) did not yield the best results for the CI performance, while the conditions of the cross-product method for the error covariance estimation which has the tendency of upward bias in estimating the standard errors exhibited better CI performance. Other important findings for the CI performance are also discussed.

6.
Sci Rep ; 12(1): 20119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418852

RESUMO

Proteins are useful biomarkers for a wide range of applications such as cancer detection, discovery of vaccines, and determining exposure to viruses and pathogens. Here, we present a low-noise front-end analog circuit interface towards development of a portable readout system for the label-free sensing of proteins using Nanowell array impedance sensing with a form factor of approximately 35cm2. The electronic interface consists of a low-noise lock-in amplifier enabling reliable detection of changes in impedance as low as 0.1% and thus detection of proteins down to the picoMolar level. The sensitivity of our system is comparable to that of a commercial bench-top impedance spectroscope when using the same sensors. The aim of this work is to demonstrate the potential of using impedance sensing as a portable, low-cost, and reliable method of detecting proteins, thus inching us closer to a Point-of-Care (POC) personalized health monitoring system. We have demonstrated the utility of our system to detect antibodies at various concentrations and protein (45 pM IL-6) in PBS, however, our system has the capability to be used for assaying various biomarkers including proteins, cytokines, virus molecules and antibodies in a portable setting.


Assuntos
Anticorpos , Espectroscopia Dielétrica , Impedância Elétrica , Citocinas , Amplificadores Eletrônicos
7.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616992

RESUMO

Hemoglobin is a biomarker of interest for the diagnosis and prognosis of various diseases such as anemia, sickle cell disease, and thalassemia. In this paper, we present a disposable device that has the potential of being used in a setting for accurately quantifying hemoglobin levels in whole blood based on colorimetric analysis using a smartphone camera. Our biosensor employs a disposable microfluidic chip which is made using medical-grade tapes and filter paper on a glass slide in conjunction with a custom-made PolyDimethylSiloaxane (PDMS) micropump for enhancing capillary flow. Once the blood flows through the device, the glass slide is imaged using a smartphone equipped with a custom 3D printed attachment. The attachment has a Light Emitting Diode (LED) that functions as an independent light source to reduce the noise caused by background illumination and external light sources. We then use the RGB values obtained from the image to quantify the hemoglobin levels. We demonstrated the capability of our device for quantifying hemoglobin in Bovine Hemoglobin Powder, Frozen Beef Blood, and human blood. We present a logarithmic model that specifies the relationship between the Red channel of the RGB values and Hemoglobin concentration.


Assuntos
Técnicas Biossensoriais , Smartphone , Humanos , Colorimetria , Hemoglobinas , Microfluídica
8.
Sci Rep ; 11(1): 6490, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753781

RESUMO

Electronic biosensors for DNA detection typically utilize immobilized oligonucleotide probes on a signal transducer, which outputs an electronic signal when target molecules bind to probes. However, limitation in probe selectivity and variable levels of non-target material in complex biological samples can lead to nonspecific binding and reduced sensitivity. Here we introduce the integration of 2.8 µm paramagnetic beads with DNA fragments. We apply a custom-made microfluidic chip to detect DNA molecules bound to beads by measuring Impedance Peak Response (IPR) at multiple frequencies. Technical and analytical performance was evaluated using beads containing purified Polymerase Chain Reaction (PCR) products of different lengths (157, 300, 613 bp) with DNA concentration ranging from 0.039 amol to 7.8 fmol. Multi-frequency IPR correlated positively with DNA amounts and was used to calculate a DNA quantification score. The minimum DNA amount of a 300 bp fragment coupled on beads that could be robustly detected was 0.0039 fmol (1.54 fg or 4750 copies/bead). Additionally, our approach allowed distinguishing beads with similar molar concentration DNA fragments of different lengths. Using this impedance sensor, purified PCR products could be analyzed within ten minutes to determine DNA fragment length and quantity based on comparison to a known DNA standard.


Assuntos
Técnicas Biossensoriais/métodos , Impedância Elétrica , Microfluídica/métodos , Oligodesoxirribonucleotídeos/análise , Citometria de Fluxo/métodos
9.
Talanta ; 215: 120791, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312428

RESUMO

Wearable biosensors are of great interest in recent years due to their potential in health related applications. Multiplex biomarker analysis is needed in wearable devices to improve the sensitivity and reliability. Electronic barcoding of micro-particles has the possibility to enable multiplexed biomarker analysis. Compared with traditional optical and plasmonic methods for barcoding, electronically barcoded particles can be classified using ultra-compact electronic readout platforms. Nano-electronic barcoding works by depositing a thin layer of oxide on the top half of a micro-particle. The thickness and dielectric property of the oxide layer can be tuned to modulate the frequency dependent impedance signature of the particles. A one to one correspondence between a target biomarker and each barcoded particle can potentially be established using this technique. The barcoded particles could be tested with wearable devices to enable multiplex analysis for portable point-of-care diagnostics and real-time monitoring. In this work, we fabricated nine barcoded particles by forming oxide layers of different thicknesses and different dielectric materials using atomic layer deposition and assessed the ability to accurately classify particle barcodes using multi-frequency impedance cytometry in conjunction with supervised machine learning.

10.
Sci Rep ; 10(1): 3015, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080205

RESUMO

The rapid qualitative assessment of surface markers on cancer cells can allow for point-of-care prediction of patient response to various cancer drugs. Preclinical studies targeting cells with an antibody to "activated" matriptase conjugated to a potent toxin show promise as a selective treatment for a variety of solid tumors. In this paper, we implemented a novel technique for electrical detection of proteins on surfaces of cancer cells using multi-frequency microfluidic impedance cytometry. The biosensor, consists of two gold microelectrodes on a glass substrate embedded in a PDMS microfluidic channel, is used in conjugation with immuno-magnetic separation of cancer cells, and is capable of differentiating between bare magnetic beads, cancer cells and bead-cell aggregates based on their various impedance and frequency responses. We demonstrated proof-of-concept based on detection of "activated" matriptase proteins on the surface of cultured Mantle cells.


Assuntos
Biomarcadores/metabolismo , Impedância Elétrica , Citometria de Fluxo , Separação Imunomagnética , Terapia de Alvo Molecular , Linhagem Celular Tumoral , Eletrodos , Humanos , Microtecnologia , Modelos Teóricos , Serina Endopeptidases/metabolismo , Razão Sinal-Ruído
11.
Microsyst Nanoeng ; 5: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645995

RESUMO

We present a novel method to rapidly assess drug efficacy in targeted cancer therapy, where antineoplastic agents are conjugated to antibodies targeting surface markers on tumor cells. We have fabricated and characterized a device capable of rapidly assessing tumor cell sensitivity to drugs using multifrequency impedance spectroscopy in combination with supervised machine learning for enhanced classification accuracy. Currently commercially available devices for the automated analysis of cell viability are based on staining, which fundamentally limits the subsequent characterization of these cells as well as downstream molecular analysis. Our approach requires as little as 20 µL of volume and avoids staining allowing for further downstream molecular analysis. To the best of our knowledge, this manuscript presents the first comprehensive attempt to using high-dimensional data and supervised machine learning, particularly phase change spectra obtained from multi-frequency impedance cytometry as features for the support vector machine classifier, to assess viability of cells without staining or labelling.

12.
Appl Psychol Meas ; 43(1): 84-88, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30573936

RESUMO

When considering the two-parameter or the three-parameter logistic model for item responses from a multiple-choice test, one may want to assess the need for the lower asymptote parameters in the item response function and make sure the use of the three-parameter item response model. This study reports the degree of sensitivity of an overall model test M2 to detecting the presence of nonzero asymptotes in the item response function under normal and nonnormal ability distribution conditions.

13.
Lab Chip ; 17(11): 1939-1947, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28470316

RESUMO

Traditional optical and plasmonic techniques for barcoding of micro-particles for multiplexed bioassays are generally high in throughput, however bulky instrumentation is often required for performing readout. Electrical impedance based detection allows for ultra-compact instrumentation footprint necessary for wearable devices, however to date, the lack of ability to electronically barcode micro-particles has been a long standing bottleneck towards enabling multiplexed electronic biomarker assays. Nanoelectronic barcoding, which to the best of our knowledge is the first impedance based solution for micro-particle barcoding, works by forming tunable nano-capacitors on the surface of micro-spheres, effectively modulating the frequency dependent dielectric properties of the spheres allowing one bead barcode to be distinguished from another. Nanoelectronic barcoding uses a well-known, but unexplored electromagnetic phenomenon of micro-particles: the Clausius-Mossotti (CM) factor spectrum of a Janus particle (JP) shifts depending on the zeta (wall) potential of the metallic half of the microsphere, and the fact that the complex impedance spectrum of a particle directly corresponds to the CM factor spectrum. A one-to-one correspondence will be established between each biomarker and the corresponding engineered microsphere. This transformative new method for barcoding will enable a new class of handheld and wearable biosensors capable of multiplexed continuous temporal bio-monitoring. The proposed nano-electronically barcoded particles utilize both bottom-up synthesis and top-down fabrication to enable precisely engineered frequency dependent dielectric signatures. Multi-frequency lock-in measurements of the complex impedance, in conjunction with multi-variate analysis of impedance data, allows for particle differentiation using a fully functional ultra-compact electronic detector.


Assuntos
Processamento Eletrônico de Dados/métodos , Nanotecnologia/métodos , Biomarcadores , Impedância Elétrica , Microesferas , Óxidos
14.
Biomed Microdevices ; 19(2): 36, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28432532

RESUMO

We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer and portable analog readout electronics, feeding into an analog-to-digital converter (ADC), and being transmitted via Bluetooth to a user-accessible mobile application. We fabricated a microfluidic impedance cytometer with a novel portable analog readout. The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 µm in diameter, despite using a low-end 8-bit ADC. The lock-in-amplifier and the ADC were set up to receive and transmit data from a Bluetooth module. In order to initiate the system, as well as to transmit all of the data, a user friendly mobile application was developed, and a proof-of-concept trial was run on a blood sample. Applications such as personalized health monitoring require robust device operation and resilience to clogging. It is desirable to avoid using channels comparable in size to the particles being detected thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 µm diameter particles in a 300 µm wide channel. The sensitivity of our system is comparable to that of a high-end bench-top impedance spectrometer when tested using the same sensors. The novel analog design allowed for an instrument with a footprint of less than 80 cm2. The aim of this work is to demonstrate the potential of using microfluidic impedance spectroscopy for low cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however, our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.


Assuntos
Contagem de Células Sanguíneas/instrumentação , Fontes de Energia Elétrica , Dispositivos Lab-On-A-Chip , Assistência Individualizada de Saúde , Conversão Análogo-Digital , Impedância Elétrica , Humanos , Razão Sinal-Ruído , Smartphone
15.
Environ Sci Technol ; 51(1): 222-231, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27959514

RESUMO

Mercury (Hg) pollution control has become an urgent need at global and national scales. This study, for the first time, comprehensively examines Hg flows in Mainland China and uncovers domestic and external causal drivers of China's Hg emissions/releases. Results show that China's Hg input reaches 2643 t in 2010. China discharges 1368 t of Hg to the environment (to air, 633 t; water, 84 t; and land, 651 t). Embedded Hg transfers across production sectors via waste/byproduct flows reduce Hg releases to land, but lead to secondary Hg emissions to air. Such revelations of embedded Hg transfers adjusts China's comprehensive Hg control that would otherwise only tackle primary emitters. Domestic consumption causes 67% of China's Hg emissions/releases, and external consumption induces the remaining 33%. Besides traditional production-side Hg control measures, demand-side measures and international joint efforts are required to effectively combat Hg pollution. Uncovering embedded and embodied Hg flows within the global economy can assist a paradigm shift necessary to make real progress in global Hg control and the implementation of the Minamata Convention on Mercury.


Assuntos
Poluição Ambiental , Mercúrio , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...